Login

Key Questions to Ask When Ordering Custom Metal Shapes

Author: Helen

Apr. 21, 2025

1

0

Choosing Sheet Metal Part Materials: Key Factors - Komaspec

Not all sheet metal parts are created equal, and the most important factor in the success of a sheet metal part is the material it’s made from.

Please visit our website for more information on this topic.

The type of metal a sheet metal part is made from must be chosen carefully to ensure that the part meets fabrication requirements during manufacture and performance requirements in its final application. Picking the wrong material can cause part or whole product failure, low yields, high costs, poor performance or a number of safety issues.

Imagine a safety critical structural part failing due to improper material selection, and you have an idea of one potential concern. If you imagine products having to be recalled, at a high cost, due to in-use failure you have an idea of another potential concern.

The process of selecting the material for a sheet metal part can be complex because of the sheer number of factors involved. The issue is something that requires careful consideration.

The most important questions to answer when selecting a material for sheet metal parts are:

  1. What requirements will a sheet metal part need to meet in application?
  2. What types of sheet metal are available?
  3. What fabrication and manufacturing processes are possible with different sheet metals?

Fig. 1: Sheet Metal Parts at Komacut

In this guide, we'll look at the most common sheet metal materials used and go over the factors that need to be considered when choosing the right material.

There are many types of sheet metal, and each type has its benefits and drawbacks that must be considered when selecting a material for a project. The different properties different materials have make them suitable for different applications.

We will explore the types of sheet metal materials used at Komaspec and give examples of real-life uses for each of them.

Mild or Low Carbon Steel

Mild steel is by far the most commonly used material for sheet metal fabrication. The relative strength it has, combined with the ease of fabrication and relatively low cost compared to stainless steel or aluminum, means that it’s suitable in plenty of applications. These steels can be used to create a wide variety of custom steel parts. Automotive body panels, furniture and structural parts are common examples of mild steel in application.

Mild Steel Pros

  • Inexpensive
  • Easy to work with
  • High weldability
  • Versatile
  • Strong for its weight
  • Can support a variety of surface finishes

Mild Steel Cons

  • Not suitable for high-gloss polishing
  • Needs protection from rust (additional processing and cost)
  • Less strong and durable than other materials
  • Less heat resistant than other materials

Stainless Steel

Stainless steel is an alloy containing chromium, which provides good corrosion resistance and improved strength. Stainless steel is great in outdoor applications or other applications in which parts might be exposed to rust or corrosive chemicals. It’s also useful in applications that need more hardness than mild steel. As well as this, it is non-magnetic and non-sparking, making it ideal for medical instruments.

Fig. 2: Mill Finish – Stainless Steel

Stainless Steel Pros

  • Easy to work with
  • Suitable for high-gloss polishing
  • Durable
  • Easy to clean and sterilize
  • High levels of built-in corrosion resistance

Stainless Steel Cons

  • More expensive than mild steel (average of three to five times the cost, depending on the grade of stainless steel)
  • Welding can be more cumbersome (requires specialized equipment)
  • It cannot be used in applications where magnetism is needed

Galvanized Steel

When steel is galvanized, a layer of zinc is bonded to its surface. This method serves as a cost-effective way to build a high level of corrosion resistance into the material. In turn, this reduces the potential for rusting prior to fabrication and the need for additional surface finishing. Galvanized steel is perfect for things like fencing and other outdoor frameworks that are exposed to the weather.

Fig. 3: Cold Galvanized Steel

Galvanized Steel Pros

  • Easy to manufacture and maintain
  • Cost-effective corrosion protection
  • Durable

Galvanized Steel Cons

  • Joints or cuts can corrode over time where the processing (laser cuts or bending in the case of sheet metal fabrication) has compromised the galvanized protective layer.
  • Galvanized steel can be expensive. It is significantly more expensive than mild steel, for example.

Aluminum

Aluminum has many wonderful qualities. Its primary qualities are its high level of resistance to rust and its reduced weight, being one-third of the weight of steel. It is less strong than other materials, but this can sometimes be overcome through design. In some applications, aluminum can also be designed to be equally as strong as steel.

Because of its lack of strength, aluminum may often not be able to handle the same stresses as steel. As such, you might want to contact our representatives at Komaspec to help you decide if aluminum is suitable for your intended use or not.

Fig. 4: Aluminum RAL

Aluminum Pros

  • High strength to weight ratio (ideal for applications requiring weight reduction)
  • Truly corrosion resistant
  • Durable
  • Aesthetically attractive with only minor polishing

Aluminum Cons

  • More expensive than carbon steels
  • Significantly lower tensile and yield strength than steel
  • Can require additional hardening processes after initial manufacturing stage

Spring Steel

Spring steel is a very resilient material containing manganese and high concentrations of carbon. It is designed to bend or flex under load and to return to its original shape when the load is removed. This makes it an excellent choice for making latching mechanisms, drive belts and, of course, springs.

Spring Steel Pros

  • High yield strength
  • High tensile and fatigue strength
  • Easily formed and shaped

Spring Steel Cons

  • Potential to lose shape over time
  • Prone to rust and corrosion
  • Limited heat resistance

For more info about each of the sheet metal materials Komaspec offers, including specific physical properties and surface finishing options, you can refer to the sheet metal material selection on our website.

Order and track sheet metal components online through Komaspec's on-demand sheet metal fabrication platform.

Visit Komacut.com

The costs that come with sheet metal parts fabrication begin with the cost of the raw material. Costlier materials, such as aluminum, stainless steel, and copper, can provide superior performance compared to cheaper materials, such as mild steel and galvanized steel. Still, they obviously come with a higher price tag.

In some cases, a cheaper metal will be suitable for a job and will provide adequate performance at a lower cost. For example, if aluminum is too expensive for a part that requires light weight and corrosion resistance, galvanized steel might be a better choice.

Ultimately, choosing the right material will mean weighing up performance requirements and the cost constraints of a project.

The table below shows a rough outline of how much each material costs. We can see that, while aluminum is twice as expensive as steel per kg, stainless steel is nearly five times more costly. Titanium is much more expensive again and is used sparingly in products such as jet engines, where the extra strength it provides is crucial.

Fig. 5: Material Cost Per Kg (USD)

The Difficulty in Comparing Material Costs

When considering which sheet metal material to buy for a project based on cost, there’s more to consider than just the price of a material per kg. You have to weigh material cost per kg against the design and performance goals of the project. Not all sheet metal is created equal in strength, weight, and appearance.

Stainless steel is stronger by weight than aluminum, for example, meaning that designs can be adapted. Thinner stainless steel can be used for a tank or vessel than it can for an aluminum one, for example.

Cost Increase of Custom Steel Parts

Custom design requirements often impact the price of steel sheet metal parts. This is because custom designs often require more intricate processes and skills to manufacture, increasing the cost of labor and materials.

Custom metal parts fabrication often also requires additional processes, such as welding, cutting, and bending, which can also increase the cost of the parts. They may require the use of specialized tools and equipment to construct correctly as well.

Understanding the mechanical properties different sheet metals have and the effect these properties have in application is critical to selecting the right material. There are many physical qualities inherent in different metals, and each one can be used to serve a different purpose.

Some of the most essential mechanical factors to consider in the material selection process include:

  • Strength
  • Ductility
  • Corrosion resistance
  • Ease of manufacture

Strength of Sheet Metal Parts

Material strength is often the most widely used metric in determining material suitability. It is measured according to how much load a material can withstand before it bends out of its original shape. This bending is also known as plastic deformation.

There are two ways of looking at the strength of a material when it comes to choosing one for manufacture. Considering each separately may give a different outcome in decision making.

Strength By Cost

This simply considers how strong a material is in respect to how much it costs. Titanium is an example of a material with a high cost to strength ratio, and mild steel is an example of the opposite.

For metal enclosures or tanks that require large amounts of high strength material at low cost, for example, low-carbon (mild) steel would generally be considered the ideal material.

Strength By Weight

This considers how strong a material is in relation to its mass (or weight). Gaining high strength with lightweight materials is important in certain applications. In airplanes, for example, reducing weight is essential, and aluminum is often a good choice.

Strength to weight properties are also assessed by looking at specific strength.

Interestingly, in a comparison of aluminum, carbon steel, and stainless steel, the aluminum alloy has the highest specific strength (ASM Material Data Sheet), despite having the lowest tensile strength.

Fig. 6: Tensile Strength vs. Specific Strength

Ductility

Also referred to as formability, this is the ability of a material to be stretched without cracking or breaking. If a material is highly ductile, it will withstand a large amount of stretching. Stretching commonly occurs in manufacture when a tight radius is formed during a metal stamping or folding process.

Fig. 7: Sheet Metal Materials at Komaspec

A simple way to visualize ductility is to imagine a material acting as a spring - the greater the elasticity of a material, the better its ductility. One thing to note is that this flexibility can be increased using a metal-forming process called annealing.

Corrosion Resistance

Corrosion occurs when a metal deteriorates as a result of the action of air, moisture or a chemical. The most common form is rust, which happens when iron in a material reacts with the oxygen and moisture in its surroundings. Good corrosion resistance (Metals - Corrosion Resistance to Aggressive Fluids) is a crucial factor in sheet metal selection because corrosion can weaken steel in a surprisingly short period of time if the conditions are right.

Fig. 8: Corrosion From Aggressive Fluids

The two main factors that help reduce corrosion are:

  1. Choosing a material that will not be prone to corrosion in the application the part will have
  2. Employing a secondary finishing process such as painting or galvanizing

What is the Best Material for Corrosion Resistance?

Stainless Steel

Stainless steel contains chromium, which forms a thin film of chromium oxide on its surface, protecting it from corrosion. Stainless steel can become discolored, or it can rust if there is long term exposure to the elements. It is particularly vulnerable to corrosion where there are high salt concentrations. However, the resistance is greatly superior to mild steels.

Bimetal corrosion is a risk with stainless steel and must be considered when mating with other parts or fasteners.

US Metal Spinning Product Page

Aluminum

A lightweight alternative to steel, aluminum is a naturally non-reactive metal that will not corrode in the presence of air or water.

Aluminum can be somewhat vulnerable to corrosion when in contact with concrete, however, and there’s also a risk of bimetal corrosion. Both of these problems can be overcome through anodizing or painting.

Modified Mild Steel

Using galvanized mild steel could be a great alternative if cost is a factor. The Zinc coating gives a layer of protection at lower cost. Be aware, however, that when galvanized mild steel sheets are cut, the edges are exposed and will be vulnerable to rust.

Mild Steels

Mild carbon steels without secondary finishing will rust rapidly in the presence of moisture or salt. In fact, unprotected steel sheets can begin to rust even before fabrication, which often leads to the need for deburring or chemical treatment to remove rust before surface finishing.

Rust can be so severe, in some cases, that it impacts the final part appearance even after painting. Parts can appear “mottled” or like they have a blotched surface when this happens.

Sheet metal part fabrication processes involve procedures such as cutting, bending, and joining sheets of metal. These procedures create different configurations of sheet metal to create custom steel parts. Each material has its own specific advantages and disadvantages in the fabrication process that need to be considered.

Laser Cutting

Laser cutting is a precise and reliable method for cutting all different types of metal. This method is a great option in many different situations. However, it’s particularly useful where speed and precision are important, such as in the automotive industry. Lasers are also useful for cutting thicker materials, for making complex cut-outs and for making very clean cuts.

Shiny metals, such as aluminum and copper, are more difficult to cut, although it is still possible to cut these materials with a laser. The minimum / maximum thickness which can be cut, however, varies depending on the material type, which in the case of very thick or very thin material, may limit potential choices.

Bending

There are two factors that have an impact on bendability:

  1. Material Choice

Some materials can be bended more easily than others and with more success in application. It’s worth noting, however, that even within the same material, there can be differences in bendability between different grades. If ductility is important, for example, the series aluminum is best avoided as the hardness of the material can result in micro-cracks and part failure duing bending.

Generally speaking, aluminum is commonly considered a good choice where sheet metal bending is required.

  1. Product Design

Designs with tight bend radii and low tolerances will mean that a more bendable material is required. For more about bend design, read our article on sheet metal design guidelines. Very stiff materials (i.e. medium carbon or stainless steels) may require larger reliefs are larger bend radii vs mild steels and aluminum parts.

Fig. 9: Metal Bending at Komacut

Weldability

Welding is one of the most common methods for joining and manufacturing metal components. This process uses a high-powered and highly controlled electric arc to heat base metals to the point where they melt. They are then joined and solidify as almost one piece.

The weldability of sheet metal will depend on the type of filler metal used, the process used and the material makeup of the sheet.

Mild carbon steels are highly weldable with a variety of processes, are generally finished with secondary processes which help to resolve discoloration of the base material.  Aluminum requires TIG welding, which can be more time and cost intensive than MIG, and the material is more vulnerable to deformation and discoloration due to heating during the welding process. Stainless is also weldable, but requires TIG or special robotic welding equipment and may need passivation or secondary processes to hide discoloration from the welding process.

Fig. 10: Robotic Welding at Komacut

Different materials have different properties when it comes to surface finishing. Not all materials are compatible with all surface finishing options, such as anodization being largely specific to aluminum, or the difficulty of electropolishing mild steel parts.

For which options are available for various sheet metal materials, please see the table below or explore in greater detail in our surface finishing article.

Finish Corrosion Resistance Coating Thickness Abrasion Resistance

Table 1: Surface Finishing: Corrosion, Thickness, Abrasion

Finish Carbon Steel Stainless steel Aluminium Application Visual Requirements Thickness Corrosion resistance Mill Finish Internal Parts or Parts with Subsequent Processing Low-Visual - - Antirust Oiling Parts with Subsequent Processing Low-Visual - 24 Hours NSS Brushed Indoor Med-Visual - - Anodized Indoor / Outdoor High-Visual - - Mircro-Polishing Indoor / Outdoor High-Visual - - Passivation Indoor / Outdoor Med-Visual 0.5 to 15μm - Zinc Plating Indoor / Outdoor Low-Visual 5 to 25μm 48 to 94 Hours NSS E-Coating Indoor / Outdoor Low-Visual 5 to 25μm 96 Hours NSS Powder Coating Indoor / Outdoor High-Visual 70 to 150μm 480- Hours

Table 2: Metal Finishing Guide

The application of the part often determines the finishing requirements. Some reasons for wanting an enhanced surface finish include:

  • Aesthetics
  • Hygiene
  • Durability

Because these aspects are critical to quality for many applications, it’s important to think about these requirements when selecting a material.

Aesthetics

Polishing is a common technique used to create a high-quality look that’s pleasing to the eye. The process involves progressively removing all surface imperfections to give a metal part a shiny finish.

Fig. 11: Surface Finishing

Polishing for Sheet Metal Parts

  • Copper
  • Stainless steel
  • Aluminum

Stainless steel can be brought to a mirror finish and is very durable; aluminum is less durable and can take longer to reach the same finish. It is not possible to create a durable polished surface on mild steel.

Hygienic Sheet Metal Parts

Sheet metal parts are often used in both the food industry and medical settings. The material chosen must be resistant to the build-up of bacteria and other contaminants.

Stainless steel, for example, is a popular choice for sheet metal products because it is non-porous and resistant to corrosion. This eliminates the need for potentially toxic paints and other coatings.

Additionally, stainless steel can be easily cleaned and sterilized using various chemical and thermal methods. This makes it an ideal choice for food-grade products and medical instrumentation.

Stainless steel 316, for example, is widely used for food service or medical equipment due to its excellent resistance to chemical cleaning agents, acids and other corrosion.

Durability for Sheet Metal Parts

Durability is the main factor that affects a material’s resilience to dents, scratches and bending. Also important in hygienic environments, the durability of a material affects how well it can withstand harsh environments without needing to be repaired or replaced.

Stainless steel is a great option if a part needs to resist scratching and be easy to repair. When scratched, it does not cause possible contamination with aluminum oxide. Aluminum, along with copper, will resist scratches and deformation very poorly.

Mild steel is another durable material, but the paints and coating needed should be considered as they can often lead to the same problems with contamination.

Material finishing requirements will help determine the best material choice for any particular part. For more about different types of finishing, read this guide.

METALSMITH SOCIETY'S GUIDE TO ORDERING METAL FOR ...

When it comes to ordering silver sheet and wire for jewelry making, as a beginner all the different options can often become overwhelming. When you are starting out creating jewelry you don’t want to break the bank buying a bunch of materials you may never utilize! You want to have the ability to be thoughtful about your design, considering which thickness of metal will be appropriate for executing your vision and also strong enough to hold up during daily wear.

In this comprehensive guide, I will provide visuals to help demystify the different options so that the next time you purchase materials for a project you can do so in confidence! Whether you're a seasoned artisan or a budding jeweler, understanding the nuances of the different options is crucial for bringing your designs to life.

WHAT METAL ARE WE USING?

Before we talk about anything we must discuss the different options for purchasing silver. The most common is sterling silver (.925) which has 7.5% copper giving the sterling durability and strength but increasing its susceptibility to firescale and tarnish. The other main option is fine silver (.999) It’s significantly softer than sterling, has a whiter appearance and is way less prone to tarnishing as it is almost entirely pure silver. Fine silver can be fused.

My perspective for beginners is that fine will generally be too soft for ring bands and structural parts of your jewelry designs, it can dent and bend. It can however be nice for a bezel wire.Then there is Argentium Silver which comes in two grades .940 and .960. It has increased tarnish resistance, a whiter color and a firestain-free surface. Argentium guarantees traceability of its raw silver, it is certified to be produced using only recycled silver. It can also be fused unlike sterling silver. Sounds amazing, but I confess I have very little personal experience with it, it wasn’t very popular when I came onto the jewelry making scene in . There are some differences between working with Argentium and Sterling so if you choose this path be sure to read up on it!

Most jewelers especially beginners will likely learn with Sterling, it is the most affordable and the durability aspect is very important!

WHAT THE HECK IS A GAUGE ANYHOW?

When you go to buy a sheet of silver you are going to have to select a “gauge”. This is the common measurement used here in United States. Gauge is a standardized measurement, the lower the gauge number the thicker the metal is and that is where much of the confusion begins! It is also important to understand the corresponding measurements in millimeters which I will also provide.

WHICH GAUGE SHEET TO BUY?

Sheet metal is going to be one of your most commonly used forms of silver when making jewelry. Sheet is available for purchase from jewelry supply companies here in the United States from 8g (3.2mm) to 34g (0.2mm) so that is quite the range! In this article I’m going to focus on sterling silver (.925) when making my recommendations.

To answer the above question I have to start with the annoying response “it depends”. Without knowing what you are designing I can’t provide an exact answer but I can explain a good place to start as a beginner and why.Generally speaking if your plan is to have sheet on hand to use as the baseplate of bezel settings and pendants or perhaps sheet for earrings…you cannot go wrong with purchasing 18g (1mm) it is thick enough to be stamped, light enough to construct earrings and strong enough to back a bezel without warping. While on the thinner side it could also be used to create a ring band making it a very versatile purchase. If it is within your budget I would also recommend some 20g (.81mm) and some 16g (1.2mm) having these slightly thinner and thicker options will give you more versatility as you continue on making jewelry. My preference with my jewelry business (corkieboltonjewelry.com) is to make jewelry that is on the thicker side, not heavy or chunky but just substantial.

WHAT DOES “DEAD SOFT” AND “HARD” MEAN?!?

On top of selecting the metal type (sterling or fine) and the gauge you will also have the options for different tempers. Temper refers to the hardness of the metal. The options are: dead soft (annealed), ¼ hard (a bit resistant to bending but readily takes shape) , ½ hard (has been worked a bit, tightening the grain at the molecular level. You can still bend the metal a bit, with force), and spring hard (thoroughly hardened and has basically no malleability.) If you will be soldering on the piece you’re making, you may as well start with dead soft because it’s easy to work with and any hardness the metal may have will be lost when you apply heat to solder. Here is an example of when to order a harder sheet: Let’s say all I’m doing is sawing out a design and cold connecting it, a harder option gives strength to my piece, and that strength will be maintained since I’m not soldering.

So with those options in mind, here are a few questions you can ask yourself when designing your project and selecting the sheet: Is the project I’m making going to get a lot of wear and tear (like a ring or a bracelet?) If the answer is yes, sterling is your best choice (since fine silver is softer). Next you need to choose a gauge heavy enough to experience the wear and tear but light enough to be comfortably. Heavy earrings for example can be uncomfortable and a while delicate ring can be cute it can also get squished. Maybe you are making a bunch of bezels and using simple backplates 20g (.81mm) would likely save you a little money but still be strong enough!

When it comes to ordering metal for jewelry making all the different options can often become overwhelming. There are so many varieties of sheet metals, wires and decorative metals. So I partnered with Rio Grande to provide a guide with some helpful tips and considerations for confidently buying materials for your next project!

PURCHASING ROUND WIRE

Wire is going to be your next most commonly used form of silver in jewelry making and thankfully it is not as much of an investment to purchase different gauges because you can buy a single foot of wire pretty inexpensively. Wire can be commonly found in even more gauges 0 (8.26mm) - 32 (.2mm). Wire is used in so many different ways you will want to consider once again: what kind of project am I making? Where on the body will it be worn? If we use the image of rings as an example we can see that the 10g (2.5mm) wire will provide us with more strength than the 14g (1.6mm). It is probably that a 14g ring like this in sterling silver would become mishappen in no time at all, but it could make a beautiful hoop earring! So choosing the gauge wire you will need for a project definitely depends on the amount of wear and tear (for example bangles and rings gets more wear and tear than earrings and pendants). 

For earring posts and French wires I have found that 20g (0.80mm) is good for most customers. The hardness of the wire you choose is once again all about application, if you are soldering the wire it becomes annealed, but if you are making an earring wire which will simply be formed and cold connected, you could in this case benefit from working with half-hard or hard since it will maintain that hardness and give the earring wire strength! You can also use hard wire for wrapping wire or creating rivets.

WHAT ABOUT HALF ROUND WIRE?

I wanted to include an image of half round wire as well because it is extremely popular, and if you order it based off of what you know about round wire you might end up with wire a bit thinner than you expected! Half-round has a flat side and a round sound making it a great option for ring bands and cuffs! The gauge is determined by the thickest part of the wire, but because it doesn't have this thickness throughout it is a daintier wire! So personally I would purchase 8g or thicker for a ring and I'd experiement with gauges 0-4 for cuffs! You want those to be sturdy!

PURCHASING BEZEL WIRE

One of the most common questions is: what gauge bezel wire should I purchase? It typically comes in gauges 24 (.51mm) - 30 (.25mm) and in various heights. First, let’s focus on gauge. If you are newer to bezel setting, consider 28g-30g because it’s easier to push over, especially if you’re doing it all by hand using a bezel rocker tool and a burnisher. You might even consider a fine silver bezel because it will push over more easily. If you’re hammer setting, either with a hammer hand piece or manually, you can use a thicker gauge bezel wire.

Next, consider the stone you plan to set and look up the stone’s hardness (MOH scale). If the stone is delicate you should set by hand (as opposed to hammer) and therefore can use a thinner gauge (28-30g). Softer stones can be set with thicker bezels but this takes some practice, when I was starting out I accidently hammered many an opal!

Regarding bezel height, take the shape and height of your cabochon into consideration. Order a few heights of bezel wire so you have options, if it’s too tall you can always trim it down or sand it. If you like to use a variety of cabochons in your work you’ll find having a variety of bezel wire on hand very helpful. In my book I dedicated an entire section to choosing the right bezel height and other bezel setting tips!

WHAT ABOUT DECORATIVE WIRES?

There are tons of gallery wires, decorative bezels and patterned wire options available  to purchase. With the knowledge you now how you can look at the listing and see how thick these items are, how tall they are if you are using them to set a stone. Whether they are a good choice for your design. Sometimes the heart wants what the heart wants, you are drawn to a wire and you buy it and figure out a design later and that’s okay!

Gallery wires should be annealed (carefully) prior to forming due to how they are produced they can be a bit brittle when you form them, same is true of some of the beaded wires! You want to form all of these gently and be careful not to mar your metal! I know melting is definitely an issue many beginners experience so when you work with decorative wires be gently with your heat. Directing your flame from below instead of putting the flame directly onto the decorative wire can help prevent melting. 

WHERE CAN I PURCHASE SHEET METALS AND WIRES FOR JEWELRY MAKING?

You can find jewelry making materials form the following retailers:

HALSTEAD BEAD

STULLER

RIO GRANDE

If you are interested in learning more definitely check out my book Metalsmith Society’s Guide To Jewelry Making. It covers all the tools you need to get started making jewelry, safety, all the basic techniques and includes ten simple projects to get you going! I have a shopping list for each project so if you are lookinh for a basic project to get started grab a copy of my book today! 

If you haven't already join our community @metalsmithsociety! 

If you found this article helpful, be sure to share it on Pinterest!

You can also support the page by making a small monthly donation on Patreon. Your support means the world to me!

If you want to learn more, please visit our website Custom Metal Shapes.

Comments

0

0/2000

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name: (required)

Your Email: (required)

Subject:

Your Message: (required)

Join Us